Indian Statistical Institute, Bangalore B. Math (II) First semester 2010-2011 Semester Examination : Statistics (I) Date: 01-12-2010 Maximum Score 80 Duration: 3 Hours

1. Let $X_1, X_2, ..., X_n$ be independently and identically distributed (iid) with one of the two probability density function (pdfs). If $\theta = 0$, then

while if $\theta = 1$, then

$$f(x|\theta) = \frac{1}{2\sqrt{x}} \qquad if \ 0 < x < \theta$$
$$= 0 \qquad otherwise$$

Find maximum likelihood estimators (mle) for θ .

[8]

2. Let us consider *logistic distribution* with parameters $\mu \in (-\infty, \infty)$ and $\beta > 0$ having probability density function (pdf) given by

$$f(x|\mu,\beta) = \frac{\exp\left(-\frac{(x-\mu)}{\beta}\right)}{\beta \left[1 + \exp\left(-\frac{(x-\mu)}{\beta}\right)\right]^2}; \ x \in (-\infty,\infty).$$
(1)

- (a) Check that $f(x|\mu,\beta)$ in (1) is indeed a *pdf*.
- (b) Find mean, median and mode of the *logistic distribution* (1).
- (c) Find a method of moments (mom) estimator for the parameter μ of the logistic distribution (1).
- (d) If U is uniform on (0,1) then find the distribution of $W = \log \frac{U}{1-U}$.
- (e) Suppose we can draw observations from uniform distribution on (0, 1). Explain, using the answer to (d), how you would draw observations from the *logistic distribution* (1).

$$[3+10+2+5+6=26]$$

3. Let $X_1, X_2, ..., X_n$ be a random sample from the population with distribution function F. Let $F_n(x) = \frac{\#X_i \leq x}{n}, x \in (-\infty, \infty)$, be the *empirical distribution function*. Let c < d be two given real numbers. Define $V = F_n(c)$ and $W = F_n(d)$. Find ρ_{UW} , the correlation coefficient between V and W, and interpret the result.

[12]

4. Consider the regression model

$$Y_i = \alpha + \beta x_i + \varepsilon_i; \ 1 \le i \le n \tag{2}$$

where $x_1, x_2, ..., x_n$ are to be treated as given values of x (constants); $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ are random errors that are *independently and identically distributed* (*iid*) as $N(0, \sigma^2)$ and α and β are parameters of the model.

- (a) Find maximum likelihood estimators (mle) for α and β based on $Y_1, Y_2, ..., Y_n$. How do they compare with least squares estimators (lse) for α and β .
- (b) If an individual has her x value to be x_0 such that x_0 belongs to the interval $\begin{bmatrix} \min_{1 \le i \le n} x_i, \max_{1 \le i \le n} x_i \end{bmatrix}$ then how would you predict her y value using model (2) and your answer to (a)?
- (c) If $x_1, x_2, ..., x_n$ are to be chosen from [-1, 1] then how would you choose them so that $Var\left(\widehat{\beta}_{lse}\right)$ is minimized, $\widehat{\beta}_{lse}$ being the *lse for* β ?

[(8+2)+2+6=18]

5. Let $X_1, X_2, ..., X_n$ be a random sample from $Uniform(0, \theta)$; $\theta > 0$. Let $X_{(1)}, X_{(2)}, ..., X_{(n)}$ be the order statistics. Obtain the joint density function of $V = X_{(n)}$ and $W = \frac{X_{(1)}}{X_{(n)}}$. Hence or otherwise show that $X_{(n)}$ and $\frac{X_{(1)}}{X_{(n)}}$ are independent.

6. This amusing classical example is from von Bortkiewicz (1898). The number of fatalities that resulted from being kicked by a horse was recorded for 10 corps of Prussian cavalry over a period of 20 years, giving 200 corps-years worth of data. These data are displayed in the following table. The first column of the table gives the number of deaths per year, ranging from 0 to 4. The second column lists how many times that number of deaths was observed. Thus, for example, in 65 of the 200 corps-years, there was one death.

No. of Deaths	Observed
per Year	Frequency
0	109
1	65
2	22
3	3
4	1

Carry out χ^2 goodness of fit test to test the hypothesis, at level of significance $\alpha = 0.05$, that the data come from Poisson distribution. Also report the p - value.

[12]